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Hard and Soft-Core Equations of 
State for Simple Fluids 
I Hard-core Equations of State and Loci of C, Extremat 

JOHN STEPHENSON 

Theoretical Physics Institute. University of Alberta, Edmonton, Alberta, Canada, T6G 2Jl 

(Received August 4, 1978) 

Various hard-core type equations of state for fluids are employed to describe loci of extrema of 
the constant pressure specific heat along isotherms, and loci of extrema of the isobaric thermal 
expansion coefficient along isobars. Data and formulae pertaining to the critical point and 
coexistence curve are presented. Comparison is made with experimental results for fluid argon. 

1 INTRODUCTION 

This series of papers is concerned with the thermodynamic properties of 
fluids which may be derived and explained by means of a suitable equation 
of state. The three main topics to be considered are: 

i) virial coefficients, 
ii) characteristic curves, 
iii) loci of extrema of C p .  

These topics are partially inter-related. Since our discussion in this series 
of papers will be somewhat detailed, the reader may wish to note that a 
rather brief summary has been presented elsewhere. ' 

In this first paper we shall be involved with a class of equations of state 
which have been constructed for the purpose of describing a system of hard 
spheres. Some of these equations have been treated by Guggenheim,2 and we 
shall find it useful to employ his general approach. The various equations of 
state will be compared numerically, and will be found to give quite similar 

t Work supported in part by the National Research Council of Canada, Grant No. A6595. 
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236 J .  STEPHENSON 

numerical predictions over the ranges of density and temperature which are 
relevant. Specifically, we shall be interested in passing in the critical param- 
eters, and more importantly in the loci of extrema of various thermodynamic 
functions. Especially we shall analyze the various predictions for the loci 
defined along isobars by the equations 

which correspond to 

rn = 1, the locus of points of inflexion of isobars plotted in the T - p 

rn = 2, the locus of extrema along isobars of the isobaric coefficient of 
diagram (or p - T diagram) 

expansion 

up = [ - p ( a ~ / a p ) , ] - ~  = (av/n),/v, (2) 

m = 3, the locus of points of inflexion of isobars plotted in the T - V 
diagram, which is also the locus of extrema of C p ,  the constant 
pressure specific heat, along isotherms. This equivalence follows 
from the thermodynamic identity 

The behaviour of the loci in the neighbourhood of the critical point of a 
simple fluid has been discussed elsewhere in the context of scaling t h e ~ r y , ~  
and also some general properties of lqci of extrema of thermodynamic 
functions are already known.4 The familiar prediction of van der Waals’ 
equation that the inflexion points of isobars in the T - V diagram lie along 
the critical isochore does not hold for real fluids. In practice all three loci 
of Eq. ( 1 )  curve round towards the liquid branch of the fusion curve. 

In this paper we shall calculate the above isobar loci for various hard-core 
equations of state and compare our results with those derived from an 
equation of state fitted by Gosman, McCarty and Hust’ to experimental 
data for argon. We shall find that the loci derived from various hard-core 
equations of state do not differ significantly from each other, either qualita- 
tively or quantitatively, except for van der Waals’ equation which Is inaccurate. 
The agreement with experimental data is quite reasonable on the qualitative 
side-our loci do terminate on the fusion curve( !)- ut unsatisfactory from 

a region T < 2T, and P < 20P,, which is rather restricted for proper calcula- 
tion of loci, and we have been obliged to extrapolate the fitted equation of state 
to unreasonably high pressures and temperatures. 

a quantitative point of view. However, the experimen ! a1 data are limited to 
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EQUATIONS OF STATE FOR FLUIDS I 231 

P 

I 

Tc TB TC TA TO 
FIGURE 1 Pressure vs temperature diagram for a simple fluid, after Rowlinson,6 showing 
suggested form of loci of C p  maxima (MAX) and minima (MIN) along isotherms. The critical 
point c and triple point t are indicated. 

In an earlier review Rowlinson6 has sketched the expected form of the locus 
of Cp extrema, and we reproduce his diagram in Figure 1. Rowlinson’s locus 
differs qualitatively from the ones we have obtained from hard-core equations 
of state and from experimental data for argon, in that his locus for Cp maxima 
terminates on the temperature axis at zero density and pressure, rather than 
on the fusion curve. In this series of papers, we shall trace the origin of this 
qualitative discrepancy to the inability of hard-core equations of state to 
describe the inflexions of the second virial coefficient B as a function of 
temperature. We shall eventually show how by softening the hard-core that 
loci of Cp extrema of the hard-core type terminating on the fusion curve, and 
loci of the softer-core type terminating on the temperature axis, may be 
obtained. This is achieved by varying the “softness” of the molecular core 
through a combination of two parameters: a “softening” temperature T,, 
and a characteristic exponent N which may be related to the repulsive ex- 
ponent n of the Lennard-Jones type (rn - n) potential. In fact N = 3/n. 

From a more general point of view, the overall aim of this series of papers 
is to investigate the range of phenomenological behaviour which can, in 
theory, be exhibited by a simple fluid. 
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238 J .  STEPHENSON 

2 RELEVANT RANGE OF DENSITY 

Following Guggenheim’ we introduce the notation 

L = Avogadro’s number 

V = molar volume 

p = 1/V = molar density 

(T = molecular diameter 

2na3 
b = L - = 4 x volume of L molecules 

3 

x = 4y = bp = dimensionless density variable. 

The range of the dimensionless scaled density variable x is 0 I x I xo, 
where the upper limit is determined by the requirement that the greatest 
possible density is achieved at geometrical close-packing, with layers of 
triangles stacked in face-centred-cubic or hexagonal-close-packed array. 
(The order of stacking is immaterial for a hard sphere system.) The values of 
xo for packing arrangements which are face-centredcubic (fcc), body- 
centredcubic (bcc) and simple-cubic (sc) are: 

f a :  xo = 4y0 = 2~&3 = 2.961 921 . . . , 
bcc: x0 = 4y0 = ~ $ 1 2  = 2.720 699.. . , (4) 

SC: x0 = 4y0 = 2x13 = 2.094 395.. . . 
Since the value x,  of x at the critical point of the fluid is about 0.5 for typical 
models, the limiting value of xo at close-packing is about 6x,. This value 
exceeds typical liquid densities at the triple point and along the fusion curve, 
which are in the range 2 . 5 ~ ~  at the triple point to 3 . 5 ~ ~  at twice the critical 
temperature. In practice the liquid-solid phase transition intervenes before 
any geometrical packing restrictions become important. 

3 HARD-CORE TYPE EQUATION OF STATE 

The hard-core equation of state including a van der Waals type attractive 
term is 

P = RTp$(bp) - UP’, ( 5 )  

where a and b are constants, b being defined above in Section 2. Various 
forms have been suggested for $(x). Using Guggenheim’s labelling we have 
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EQUATIONS OF STATE FOR FLUIDS I 

for $(x) = $01): 
w: (1 - 4J9-1, 

T :  

G: (1 - Y ) - ~  

F :  

(I + ~ J J  + 3y2)(1 - Y ) - ~ ,  

(1 + JJ + r2)(1 - y ) - 3  
cs: (1 + + y 2  - y3)(r  - y ) - 3 ,  

where 

W CT van der Waals’ equation, 
T CT Thiele’s “pressure” equation of state,7 
G t) Guggenheim’s suggested simplified form,’ 
F CT Frisch’s scaled-particle equation of state? and also Thiele’s 

“compressibility” equation of ~ t a t e , ~ . ~  
CS CT Carnahan and Starling’s approximation to the exact hard 

sphere virial expansion. O 

It is convenient to introduce dimensionless scaled variables as follows : 

239 

scaled density, 

scaled pressure, p = b2P/a, 

x = 4y = bp, 
scaled temperature, t = bRT/a, (7) 

so the scaled equation of state in dimensionless form is 

p = tx&) - x2. (8) 
The equation of state (8) has such a simple form that calculation of various 
thermodynamic functions is straightforward. Since the pressure is linear in t, 
the isochores are straight lines, and the constant volume specific heat Cv 
is constant, independent of density and temperature, and equal to its ideal 
gas value, $R for a monatomic gas. The constant pressure specific heat Cp 
is then given by 

( C p  - Cv)/R = $2/[$ + x$‘ - 24t-J. (9) 

Guggenheim’ has made a critical comparison of the equations of state for 
the first four entries in (6). Discarding van der Waals’ equation, which is 
unsatisfactory both qualitatively and quantitatively, one finds that there is 
quite good numerical agreement between the various models T, G, F and CS, 
in ascending order of merit, and the exact series expansion of +(x) E $01) 
for the hard-sphere gas. [The discrepancy between l/& and l/$cs is roughly 
1.2% at a density 2p,  and 2% at 2.5pC, and worsens with increasing density. 
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240 J. STEPHENSON 

The corresponding percent discrepancies between these functions evaluated 
at equal values of x/xc, where x, is the critical value of x for the particular 
model, are less than 1 % up to 3pc. The discrepancies between the G and CS 
expressions are about double those between F and CS.] 

4 CRITICAL POINT DATA AND EXACT EXPANSION OF q5 

The critical point for the hard-core equation of state is located by applying 
the usual conditions that the critical isotherm have a horizontal point of 
inflexion there. The scaled critical density is then the solution x,  of 

(10) 4 - x(f - X 2 4 ”  = 0 

and the scaled critical temperature and pressure are given by 

The critical parameters are tabulated (Table I) for the various models, 
together with the critical values of the compressibility factor 2 = PV/RT, 
and the simplest rational algebraic factors of Eq. (10) for y, = xc/4. 

TABLE I 

4(x) = $(y) and critical point data for various models 

Model W T G F CS 

= JICV) 1 1 + 2y + 3y2 1 1 + y + y’ 1 + y + y2 - y3 
x = 4y (1 - 4y) (1 - y y  (1 - YI4 (1 - Y Y  (1 - Y)’ 

Polynomial 
for Y ,  

1 - 4y - 24y2 
- 1zY3 + 3y4 

1 - 5y - 20y2 
1 - 12y 1 - 6y - 1 5 ~ ’  1 - 7y - 6y2 

- 4y’ + 5y4 - y5 

x ,  = 4y, 0.333333 0.537862 0.506395 0.5 14668 0.521776 

[ = -  0.296296 0.381623 0.373056 0.375312 0.377315 
bR 

a 

bZP,  
a 

p ,  = - 0.037037 0.073242 0.068208 0.069510 0.070669 

0.361056 0.359853 0.358956 2, = p,v, 0.375000 0.356826 
R T  
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EQUATIONS OF STATE FOR FLUIDS I 24 1 

Next we make comparison between the critical point data for these models 
and the exact hard-sphere expansion for 4(x), the first few terms of which are1 

03 

= +oI) = 1 any", say 
n = O  

= 1 + 4y + 10yz + (18.364 768 37 . .  . )y3 
+ (28.34 0.08)~~ + (39.5 0 . 4 ) ~ ~  + (56.5 & 1 . 6 ) ~ ~  + . . * .  

The coefficients up to a3 are known exactly in closed form for the hard-sphere 
gas : 

a0 = 1, a,  = 4, a2 = 10, 
a3 = [438fi - 4131 arc cos(l/3) + 2707n]/70n (14) 

Also the T, G, F and CS versions for 4(x) give the coefficients up to az 
exactly, so the initial values, at x = 0, of 4 and its slope & and curvature &", 
are correct for these models. In order to estimate x, from the exact series 
expansion of 4, we take a sequence of partial sums of 4 and its derivatives up 
to some power N in y. Thus Eq. (10) for the critical density x, = 4y, has the 
full expansion 

03 

1 - c (nZ - l)a,y" = 0. 
n =  1 

For each particular value of N 2 2 the smallest positive real root y,(N) of 
the truncated series version of Eq. (15), 

N 
1 - c (nZ - l)a,y" = 0, 

n= 1 

provides an estimate of y,, and the sequence of estimates y,(N) converges 
exponentially fast to y,. Results for the exact expansion, and a test run on the 
CS model are presented in Table 11. Similar sequences for the critical tempera- 
ture and pressure calculated by using partial sums in (11) and (12) are also 
tabulated. The numerical values of the critical parameters for the various 
models are not so markedly different, and there is little to be gained by making 
extensive calculations with all the approximate forms for 4, or even con- 
structing Pade approximants to the exact expansion. Instead, most of our 
later calculations will be for the F-model. The qualitative results will be the 
same for all reasonable approximations to 4, and we maintain the expectation 
that the numerical disagreements will not be too serious. 
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242 J .  STEPHENSON 

TABLE 11 
Partial sum estimates of critical parameters for CS 
model and exact series expansion. 

N x, 1, P C  z, 
Carnahan and Starling 

2 0.730297 0.422064 0.102744 0.333333 
3 0.563978 0.385475 0.076123 0.350151 
4 0.531823 0.378935 0.071781 0.356185 

5 0.524140 0.377633 0.070895 0.358178 
6 0.522304 0.377375 0.070713 0.358760 
7 0.521887 0.377326 0.070677 0.358911 

8 0.521798 0.377317 0.070671 0.358947 
9 0.521780 0.377315 0.070669 0.358954 

10 0.521776 0.377315 0.070669 0.358956 

... ... ... ... ... 
co 0.521776 0.377315 0.070669 0.358956 

Exact series expansion’ ’ 
2 0.730297 0.422064 0.102744 0.333333 
3 0.562073 0.384939 0.075796 0.350318 
4 0.530204 0.378425 0.071490 0.356306 

5 0.522747 0.377156 0.070631 0.358247 
6 0.520861 0.376890 0.070444 0.358846 

... ... ... ... 

5 COEXISTENCE CURVES 

Since it is desirable to learn whether or not characteristic curves and other 
loci of interest terminate on the vaporization curve, it is necessary to locate 
the liquid and gas branches of the coexistence curve. The usual three re- 
quirements that the pressure, temperature and chemical potential be con- 
tinuous across the vaporization curve lead to three conditions relating the 
gas density x1 and the liquid density x2 to each other and to the temperature 
and pressure: 
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EQUATIONS OF STATE FOR FLUIDS I 243 

For any particular choice for 4, the integral in (17) is performed, if possible 
analytically. Then for a chosen set of values of the liquid density x2 one 
calculates numerically from (17) the corresponding set of gas densities xi. 
Substitution in (18) and (19) yields the temperatures and pressures on the 
vaporization curve. 

For the F-model, for example, the integral on the RHS of (17) is 

6 C, EXTREMA ALONG ISOTHERMS AND RELATED LOCI FOR 
THE HARD-CORE EQUATION OF STATE 

As indicated in the introduction, one of the aims of this paper is to obtain the 
three related loci of extrema of p"- ' (dT/dp) ,  along isobars, which are 
defined by Eq. (1). For the hard-core equation of state ( 5 )  or (8) one readily 
finds that the equations for these loci reduce to 

2x[(m - 2)# - 2x4') 
[(m - 3)(4 + x4')# + 4x24" - 2(x4')'] ' t =  m = 1,2, 3. (21) 

Along the locus of C p  extrema, with m = 3, a factor of x cancels and the 
formula for the locus simplifies slightly to 

2C# - 2x4'1 
x[&4" - 24'21 ' (m = 3). t =  

Graphs of the nested loci are presented in Figures 2 and 3 for the F-model. 
Results for the G-model are rather similar, as expected. One observes that 
C p  passes through a maximum along isotherms at points on the portion of the 
locus of extrema (m = 3) between the critical point c and the point of oertical 
tangency in the P-T and p - T  diagrams. Beyond this point the locus of C p  
extrema along isotherms corresponds to minima. At the point where maxima 
give way to minima, C p  undergoes inflexion with (dCp/dP), = 0 and 
(d2CP/dT2), = 0. There one may easily show that 

so the locus has vertical slope in the P-T and p-T diagrams, and is tangent to 
the corresponding isotherm in the P-p diagram. 

The behaviour of ( - )p" - ' (aT /dp) ,  along isobars can be analyzed too. 
For m = 1, 2, 3 the loci correspond to minima of these (positive) quantities 
along isobars from the critical point to the points where each locus has a 
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244 J. STEPHENSON 

0.5 1.0 1.5 2.0 
FIGURE 2 Pressure vs temperature diagram for the F-model hard-core equation of state for 
a simple fluid, Eqs. (5) and (6), showing loci of extrema of p " ' - ' ( d T / ~ ? p ) ~  along isobars. The 
locus rn = 3 is also a locus of Cp extrema, which are maxima from the critical point c to the point 
of vertical tangency, and minima thereafter. The triple point t and fusion curve for argon have 
been inserted. 

horizontal tangent in the P-T and P-p  planes. At these places minima give 
give way to maxima at points of inflexion where 

dP d P  _ -  - 0  and c= r$), 
d T - d p -  dP P 

so the loci are then also tangent to the corresponding isobars. The remaining 
portions of the loci pertain to minima. The behaviour of the isobaric thermal 
expansion coefficient ap  is obtained from the case rn = 2, so ap has maxima 
along isobars between the critical point and inflexion point, where the locus 
rn = 2 has horizontal tangency in the P-T  and P-p diagrams, and minima 
thereafter. It should be noted that van der Waals' equation fails to give the 
change over from minima to maxima (or maxima to minima for ap). 
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EQUATIONS OF STATE FOR FLUIDS I 245 

FlGURE 3 Density vs temperature diagram for the F-model, showing loci as in Figure 2. 
The locus rn = 3 is a locus of C,extrema, which are maxima from the critical point c to the point 
of vertical tangency, and minima thereafter. The coexistence curve has been calculated for the 
F-model, Eqs. (17)-(20), with liquid branch I and gas branch g. The graph of liquid density 
along the fusion curve for argon has been drawn. Also the 20 P, isobar for the F-model has 
been included. 

7 C, EXTREMA AND RELATED LOCI FOR ARGON 

Direct calculation of the loci of extrema of p"-'(aT/ap), is achieved via 
the equivalent condition 

p m -  1 (aZp/a T2),(aP/ap); 

(apla TI; 
+ 

The various derivatives are all evaluated from the equation of state,' and the 
results are graphed in Figures 4,5 and 6. The qualitative agreement between 
the hard-core equation of state predictions and the "experimental" loci 
is only fair. The loci for argon lie at much higher pressures and temperatures, 
and exhibit a change of slope just before terminating on the fusion curve. 
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25 

p/pc 
20 

15 

10 

G 
U 

C 
C 

FIGURE 4 Pressure vs temperature diagram for argon,5 showing loci of extrema, as described 
for Figure 2. Critical data for argon used to scale the axes are P, = 48.34 atmos., pc = 13.41 rnol/l, 
T,  = 150.86 K. 

I I I I 

3.0 / - m = 3  

20 

- 

P 
Pc 

- 

1.0 

0.0 

- 

I I I 1 

1.0 1.5 2.0 2.5 VT 0.5 
C 

FIGURE 5 
for Figure 3. The 20 P, isobar for argon has been inserted. 

Desnsity vs temperature diagram for argon,5 showing loci of extrema, as described 
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EQUATIONS OF STATE FOR FLUIDS I 247 

FIGURE 6 Pressure vs density diagram for argon, showing loci of extrema, as in Figures 
4 and 5. 

However, the region of validity of the equation of state is restricted to T < 2T, 
and P < 20P,, so the experimental loci for C p  extrema at high pressures and 
temperatures are probably numerically in error. The switchbacks in the loci 
near the fusion curve are also of doubtful validity. 

8 CONCLUDING REMARKS 

In this paper we have applied hard-core type equations of state in an attempt 
to describe loci of extrema of C p  along isotherms, and loci of extrema of the 
isobaric thermal expansion coefficient nP and related quantities along isobars. 
Qualitative agreement is obtained since all the loci considered are found to 
terminate on the fusion curve, but numerical comparisons are unsatisfactory. 
Various general formulae and data pertaining to the critical point and co- 
existence curve of the hard-core type equation of state have been presented. 
These will be needed in some of the later papers of this series. 
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